stats

2022-11-07 16:04:04 By : Ms. syndra Mia

Who this guidance is for: use by federal, state, and local public health officials, respiratory protection program managers, occupational health service leaders, infection prevention and control program leaders, and other leaders in healthcare settings who are responsible for developing and implementing policies and procedures for preventing pathogen transmission in healthcare settings.

Purpose: This webpage describes considerations for the use of powered air-purifying respirators (PAPRs) to provide respiratory protection to healthcare practitioners (HCP) as a component of a formally developed and implemented written respiratory protection program. It addresses conventional, contingency, and crisis surge PAPR use and maintenance practices.

This interim guidance is based on what is currently known about the transmission and severity of coronavirus disease 2019 (COVID-19).

The US Centers for Disease Control and Prevention (CDC) will update this guidance as needed and as additional information becomes available. Please check the CDC COVID-19 website periodically for updated interim guidance.

Conventional capacity strategies should be incorporated into everyday practices.

Contingency capacity strategies should be used when shortages are predicted but supplies are available.

Crisis capacity strategies should be used during known shortages.

NIOSH-approved respirators are available in many types, models, and sizes from many manufacturers for a wide variety of uses in many occupational settings. The most common types of respirators in healthcare are N95 filtering facepiece respirators (FFRs), surgical N95 FFRs, and PAPRs.

Of these three options, many healthcare practitioners are the least familiar with PAPRs. A PAPR is an air-purifying respirator that uses a blower to force air through filter cartridges or canisters and into the breathing zone of the wearer. This process creates an air flow inside either a tight-fitting facepiece or loose-fitting hood or helmet, providing a higher assigned protection factor (APF) than the reusable elastomeric non-powered air-purifying half facepiece (half mask) or N95 FFRs. A PAPR can be used for protection during healthcare procedures in which HCP are exposed to greater risks of aerosolized pathogens causing acute respiratory infections.

A PAPR may have a tight-fitting half or full facepiece or a loose-fitting facepiece, hood, or helmet. It has an OSHA APF of at least 25 for loose-fitting hoods and helmets, 50 for tight-fitting half masks, and 1,000 for full facepiece types and some loose-fitting hoods and helmets where the manufacturer’s testing has demonstrated an APF of 1,000.

CDC has published recommendations for HCP respiratory protection and of commonly used NIOSH-approved, FDA-cleared, single-use filtering facepiece N95 surgical respirators.1 Properly fitted FFR and half facepiece reusable elastomeric respirators are expected to reduce exposures to one-tenth of the concentration that is in the air, based on OSHA’s APF of 10 for these respirator types. All PAPR APFs exceed the APF of 10 for N95 FFR or elastomeric half facepiece respirators.2

PAPRs reduce the aerosol concentration inhaled by the wearer to at least 1/25th of that in the air, compared to a 1/10th reduction for FFRs and elastomeric half facepiece air-purifying respirators. OSHA assigns an APF of 1,000 to some PAPRs with hoods or helmets. However, employers must have evidence provided by the respirator manufacturer that testing of these respirators demonstrates performance at a level of protection of 1,000 to receive an APF of 1,000. Absent such evidence, PAPRs with loose-fitting helmets or hoods have an APF of 25. When used properly, PAPRs provide increased protection and decrease the likelihood of infection transmission to the wearer as compared to FFRs and half face reusable elastomeric respirators.

A variety of NIOSH-approved PAPR designs are available. Examples include those with tight-fitting facepieces and loose-fitting hoods or helmets, blower styles, battery types (e.g., Lithium ion, Nickel-Metal hydride, Nickel Cadmium) or over-the-counter disposable batteries, and high efficiency (HE) filters or filter cartridges. HE filters are 99.97% efficient against 0.3 micron particles. A PAPR may have adjustable air flow rates for added comfort and a range of cartridge protections some of which are solely for particulates (HE filters) and others which also protect against chemical gases and vapors that can be used to help protect against hazards associated with the handling of certain hazardous drugs and cleaning/disinfecting operations. The substantial PAPR product diversity provides flexibility to customize protection needed in a healthcare setting.

Loose-fitting NIOSH-approved PAPRs have several advantages over tight-fitting non-powered approved air-purifying respirators, including3:

The facility should assess the limitations and factors associated with using PAPRs when considering their use in healthcare settings, including:

NOTE: PAPR HE filters used in industry are generally re-used until they are soiled, damaged, or reduce PAPR air flow below specified levels. Caution should be used when using the filter for a live virus, and a practical replacement cycle should be implemented until more is known.

When respirators, including PAPRs, are used to reduce inhalation exposures, OSHA requires a written respiratory protection program in compliance with OSHA 29CFR1910.134, and the respirators must be NIOSH-approved.4 To be considered NIOSH-approved, the PAPR assembly cannot be modified from its approved configuration, and only those replacement parts specified and provided by the manufacturer must be used. The manufacturer’s PAPR instructions are specific to a respirator model’s materials and specifications. Instructions are generally provided with the PAPR facepiece, blower, and battery packaging. All instructions must be carefully followed.

OSHA also permits employers to use the cleaning recommendations provided by the manufacturer of the respirator, provided such procedures are as effective as those listed in Appendix B- 2, meaning that the respirator is properly cleaned and disinfected in a manner that prevents damage to the respirator and does not cause harm (e.g., skin irritation) to the user.5

PAPRs may be used in healthcare for a variety of applications. Because they provide higher APFs than N95 FFRs and reusable elastomeric half facepiece respirators, PAPRs are suitable for use when aerosol-generating procedures are performed, by hospital first receivers, or when the respirator user is not able to wear a tight-fitting respirator. For effective use, PAPR manufacturer instructions must be followed.

The components of NIOSH-approved PAPRs vary considerably among manufacturers, and they react differently to cleaning and disinfection solutions and procedures. Manufacturers’ cleaning and disinfection solutions and procedures also vary. These important maintenance activities can cause damage or deteriorate PAPR facepieces, headgear components (hoods, helmets), breathing tubes (hoses), and batteries. If cleaning and disinfection solutions and procedures are ineffective, HCP may be at risk of contact transmission. For these reasons, manufacturers generally recommend that the filter component be discarded. Some employers may be able to follow manufacturer-specific instructions for conventional use, but the cost of doing so may make PAPRs a less desirable solution to achieve the necessary protection.

PAPR use requires a robust maintenance program for repairing or replacing components that have become damaged during use, or during cleaning and disinfection and battery management procedures.6 Competent, trained staff are required to support the PAPR maintenance program.

Manufacturers recommend cleaning and disinfection procedures for PAPR components except for the HE filter/cartridge, which they generally recommend be discarded and replaced. Filter cartridges can be reused until they become so clogged that they reduce airflow or become visibly soiled or damaged. Clogging is not expected to be a factor in non-dusty environments such as healthcare settings. The outside of the filter cartridge can have surface cleaning and decontamination while the rest of the unit is being serviced. Viruses and bacteria causing acute respiratory infections can survive on respirator components for variable periods of time, from hours to weeks. Consequently, contaminated respirators must be handled, cleaned, and disinfected properly to reduce the possibility of the device serving as a fomite and contributing to disease transmission.7 According to OSHA, the employer may use other commercially available cleansers of equivalent disinfection quality if their use is recommended or approved by the respirator manufacturer.

Conventional use requires cleaning and disinfecting using either the procedures in OSHA’s Respiratory Protection Standard or the procedures recommended by the respirator manufacturer, provided they are at least as effective as OSHA’s.8 If an alternate procedure is used to clean and disinfect the PAPR and its components, it must be recommended or approved by the manufacturer.

In general, cleaning and disinfecting consists of dissembling the PAPR, cleaning and disinfecting components, thoroughly rinsing components, and reassembling the PAPR when components are dry. It is important to follow all steps set forth in the manufacturer’s instructions. Cleaning is recommended after each use, but the PAPR must be cleaned as often as necessary to prevent them from becoming unsanitary.

As with reusable elastomeric respirators, manufacturers generally recommend PAPR HE filters and filter cartridges are not to be cleaned or disinfected. Unlike reusable elastomeric respirators, PAPRs use only HE filters. These filters can differ in their appearance and their attachment on, or fit into, the blower assembly. Routine maintenance is also required for battery charging, and/or replacement. The maintenance program for PAPRs requires a supply of replacement components, including HE filters/cartridges to support and maintain PAPR use.

CDC has provided thorough information on disinfecting equipment and surfaces potentially contaminated by coronaviruses.9 Specific instructions for cleaning and disinfecting PAPRs are not addressed.

Some disinfectants are powerful germicides, and their use requires special precautions such as adequate ventilation, use of clean non-sterile gloves, gowns, or face shields. Care must be taken during cleaning and disinfection to ensure the cleaning staff does not self-infect or injure themselves performing this work.

Cleaning and disinfection must be done by competent trained individuals. Centralizing this activity can ensure it is properly done.

Because of necessity, PAPR components including filters may be treated differently for their cleaning and disinfection. Whereas conventional practice is to discard the filters after each use, contingency or crisis practices may necessitate cleaning and disinfecting the filter. The performance of some filter media can be degraded by contact with the disinfectant.

The effectiveness of an alternate filter cartridge disinfection solution and procedure may be uncertain:

Some PAPRs have  filter cartridges or blower assemblies that prevent disinfectant contact with the filter media. If available, these PAPRs should be used in the contingency or crisis capacity strategy approaches. These PAPR designs provide added assurance that the filter media will not be contacted with the cleaning and disinfection solutions. These filter cartridges, as well as PAPR blowers may be wiped down repeatedly.

NOTE: PAPR HE filters used in industry are generally re-used until they are soiled, damaged, or reduce PAPR air flow below specified levels. Caution should be used when using the filter for a live virus, and a practical replacement cycle should be implemented until more is known.

Practices not approved by the manufacturer can increase the risk and uncertainty of re-using damaged or degraded components. This must be balanced against other available HCP protection options to sustain effective HCP protection and patient care.

Alternate procedures used during emergencies should be assessed and documented in the written RPP, including alternate cleaning and disinfection practices.

For disinfection, diluted household bleach solutions, alcohol solutions with at least 70% ethyl alcohol, and EPA-registered household disinfectants for use against coronaviruses are effective.

For use of diluted household bleach solutions, follow disinfectant manufacturer’s instructions for proper disinfectant application, PPE, and ventilation.

Products with EPA-approved emerging viral pathogens claims are expected to be effective against SARS-CoV-2. Follow the manufacturer’s instructions for all cleaning and disinfection products (e.g., concentration, application method and contact time, etc.).

Disinfectants listed on the EPA’s Registered Antimicrobial Products for Use Against Novel Coronavirus SARS-CoV-2, the virus that causes COVID-19, could be used to inactivate the virus.10 Those intended for use with soft surfaces may be preferred.

CAUTION: The following may degrade or damage the respirator components.

The following is a general step-by-step process for cleaning and disinfecting PAPR components. PAPR manufacturers may not authorize these steps; however, during crisis operations when conventional procedures are not feasible, these steps could extend the supply of PAPR components.

If alternate cleaning or disinfection instructions are authorized, it is important to follow the facility’s established infection control practices for cleaning organic and inorganic materials and infectious organisms including the virus that causes coronavirus disease 2019.

Healthcare practitioners should always wear the required proper personal protective equipment (PPE) during cleaning and disinfecting respirator components. These workers should always follow the disinfecting agent manufacturer’s user instructions regarding usability, application, dilution ratio and contact time, and ensure all components are thoroughly rinsed with clean, warm water and thoroughly dried before use or storage. In addition, PAPR facepieces or headgear worn by more than one user must be cleaned and disinfected before being worn by a different user in shared situations.

There are several basic steps to clean and disinfect PAPR components – dissemble, clean, disinfect, rinse and dry, inspect, repair or replace, and store. The order and details of each step are important. PAPR components can be stored and reassembled, or reassembly can be done before use.

PAPR components may become damaged or deteriorated with prolonged or extended use of disinfecting products. Competent, trained staff must inspect the components of their PAPR following each disinfection and prior to re-use of components. Additionally, the user should always inspect the components of their PAPR prior to each use and report any damaged components. Damaged components should be repaired or replaced according to user instructions.

Alternate cleaning and disinfection procedures have been studied and found to be generally effective for use during a pandemic.12 13 Procedures were used to clean and disinfect components inoculated with H1N1 influenza A/PR/8/34 (ATCC VR-1469).

While these methods have been demonstrated to be effective at disinfecting PAPRs, caution should be used as some manufacturers have reported that PDI™ AF3 Saniwipes can damage some PAPR components. The chemicals in them cause crazing (a rapid and sever embrittlement of plastics). Chemical compatibility for PAPR components is not well understood. These compounds are referred to as quaternary ammonium compounds, which PAPR manufacturers strongly recommend should be avoided. These disinfectants have been shown to be incompatible with some materials and do not have proven efficacy against all microorganisms.11

If following these procedures and applying them to filter cartridges during periods when supplies are limited or not available, extreme care must be taken to prevent cleaning and disinfectant contact with the filter media. External surfaces of filters cartridges should be carefully wiped, not dipped, soaked, or submerged when applying the cleaning and disinfectant solutions.

Practices not approved by the manufacturer can increase the risk and uncertainty of re-using damaged or degraded components. This must be balanced against other available HCP protection options to sustain effective HCP protection and patient care when supplies are limited or not available.

Modified procedures used during emergencies, including alternate cleaning and disinfection practices, should be documented and evaluated frequently throughout the crisis operation.

1 CDC [2020]. Strategies for optimizing the supply of N95 respirators.

2 OSHA [2009]. Assigned Protection Factors: for the Revised Respiratory Protection Standard. Available from: https://www.osha.gov/Publications/3352-APF-respirators.html

3 3M [2018]. Using PAPRS in Clinical and Healthcare Settings. Available from:  https://workersafety.3m.com/using-paprs-clinical-healthcare-settings/

4 OSHA 29CFR1910.134. Available from: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.134

5 OSHA 1910.134 App B-2 Respirator Cleaning Procedures (Mandatory). Available from: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.134AppB2

6 NIOSH [2013]. Getting Optimal Performance from a Powered Air-purifying Respirator (PAPR) Depends on the Condition of its Battery! U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, DHHS (NIOSH) Publication 2013-146, https://www.cdc.gov/niosh/docs/2013-146/pdfs/2013-146.pdf

7 WHO [2014]. Infection Prevention and Control of Epidemic-and Pandemic Prone Acute Respiratory Infections in Health Care. Available from: https://www.who.int/csr/bioriskreduction/infection_control/publication/en/

8 OSHA [2012]. Transcript for the OSHA training video entitled Maintenance & Care of Respirators. Available from: https://www.osha.gov/video/respiratory_protection/maintenance_transcript.html

9 CDC [2019]. Guidelines for Disinfection and Sterilization in Healthcare Facilities, 2008. Available from: https://www.cdc.gov/infectioncontrol/pdf/guidelines/disinfection-guidelines-H.pdf

10 EPA [2020]. List N: disinfectants for use against SARS-CoV-2. Available from: https://www.epa.gov/pe0sticide-registration/list-n-disinfectants-use-against-sars-cov-2

11 Rutala WA, Weber DJ [2019]. Healthcare Infection Control Practices Advisory Committee. Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008.

12 Lawrence C, Harnish DA, Sandoval-Powers M, Mills D, Bergman M, Heimbuch BK [2017]. Assessment of half-mask elastomeric respirator and powered air-purifying respirator reprocessing for an influenza pandemic. Am J Infect Control, 45(12):1324-1330.

13 Applied Research Associates, Inc. [2019]. Research to Mitigate a Shortage of Respiratory Protection Devices During Public Health Emergencies. Contract # HHSF22321400158C. Available from: https://www.ara.com/wp-content/uploads/MitigateShortageofRespiratoryProtectionDevices_3.pdf

To receive email updates about COVID-19, enter your email address:

We take your privacy seriously. You can review and change the way we collect information below.

These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.

Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.

Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.

Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.

Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.